113 research outputs found

    Diversity of thought in the blogosphere: implications for influencing and monitoring image

    Get PDF
    A blog, a shortened form of weblog, is a website where an author shares thoughts in posts or entries. Most blogs permit readers to add comments to posts and thereby be a conversational mechanism. One way that companies have started to use blogs is to monitor their corporate image (in this dissertation, the term image is used in reference to corporate, brand and/or product image). This study focuses on how common socio-psychological processes mediate consumers’ revelation of corporate image in the blogosphere. Centering resonance analysis, a means of measuring similarity between two bodies of text, is used in conjunction with multidimensional scaling to locate text as cognitive objects in a space. Clusters are then detected and measured to quantify diversity in the thoughts expressed. Detected patterns are studied from a social process theory perspective, where complex phenomena are hypothesized to be the result of the interaction of simpler processes. A majority of blog commenters compromise the expression of their thoughts to gain social acceptance. This study identifies the most extreme of such people so companies who monitor blogs can assign less weight to image indications gained from them as they may be merely expressing thoughts that are intended to maintain social acceptance. It was also found that single-theme blogs attract a readership with similarly narrow interests. The boldest and most diverse thinkers among comment writers have the most impact because of their ability to provoke the thinking of others. However, commenters who repeat the same ideas have little effect, suggesting that introducing shills is unlikely to shift the sentiment of a blog’s readership. People participate in blog communities for reasons (e.g., need for community) that may undermine thought diversity. However, there may be value in serving those needs even though no valuable insights are provided into image or directions for product development. Members of homogeneous-thinking communities were observed to more actively participate, with greater longevity. This may increase loyalty to the company hosting the blog

    Diversity of thought in the blogosphere: implications for influencing and monitoring image

    Get PDF
    A blog, a shortened form of weblog, is a website where an author shares thoughts in posts or entries. Most blogs permit readers to add comments to posts and thereby be a conversational mechanism. One way that companies have started to use blogs is to monitor their corporate image (in this dissertation, the term image is used in reference to corporate, brand and/or product image). This study focuses on how common socio-psychological processes mediate consumers’ revelation of corporate image in the blogosphere. Centering resonance analysis, a means of measuring similarity between two bodies of text, is used in conjunction with multidimensional scaling to locate text as cognitive objects in a space. Clusters are then detected and measured to quantify diversity in the thoughts expressed. Detected patterns are studied from a social process theory perspective, where complex phenomena are hypothesized to be the result of the interaction of simpler processes. A majority of blog commenters compromise the expression of their thoughts to gain social acceptance. This study identifies the most extreme of such people so companies who monitor blogs can assign less weight to image indications gained from them as they may be merely expressing thoughts that are intended to maintain social acceptance. It was also found that single-theme blogs attract a readership with similarly narrow interests. The boldest and most diverse thinkers among comment writers have the most impact because of their ability to provoke the thinking of others. However, commenters who repeat the same ideas have little effect, suggesting that introducing shills is unlikely to shift the sentiment of a blog’s readership. People participate in blog communities for reasons (e.g., need for community) that may undermine thought diversity. However, there may be value in serving those needs even though no valuable insights are provided into image or directions for product development. Members of homogeneous-thinking communities were observed to more actively participate, with greater longevity. This may increase loyalty to the company hosting the blog

    Towards a UK co-operative for the advancement of quantum technology

    Get PDF
    The meeting was the fourth in DSTL's series of community meetings and had a Systems Engineering theme – recognising the increasing importance of this topic for many in the Quantum Technology (QT) community. There is a growing recognition that, although there are significant research challenges associated with realising the commercial and societal benefits anticipated from quantum technologies, there are also other challenges which concern the physical, commercial, societal and regulatory environments into which these new technologies will be integrated. Similar difficulties have been faced and overcome by the information and communications industry. One of the striking characteristics of this sector over the past 20 years has been the speed at which advances in semiconductor technology have been exploited by industry. Each new generation of semiconductor devices has led to new system designs and to new user capabilities which represented a major advance upon the systems and capabilities that came before them. However, to achieve this required a large number of different components and tools to become available at the right time, and at an affordable price. The routine achievement of this is evidence of how companies and institutions within the sector have been able to communicate effectively and establish a high level of collaboration, whilst still maintaining intense competition at the product level. QT is very different to the semiconductor industry. While a number of target applications exist the discipline is very much in its infancy. At one end of the spectrum, there are some applications in communications and sensors that are relatively close to market, and, at the other end, there are some applications in computing and simulation that are still far from market. Many choices of enabling technologies and materials have yet to be fixed, and there is, as yet, very little first-hand experience of the problems that will arise when companies seek to establish repeatable manufacture of quantum components and systems. What can we learn from the International Technology Roadmap for Semiconductors (ITRS) that might benefit the Quantum Technology community? Generating an additional quantum roadmap would merely duplicate previous work – but establishing a small number of cross-community working groups might be a way to assist UK industry to gain a competitive edge in the application of quantum technologies, without duplicating the existing activities by other bodies such as InnovateUK, British Standards Institution (BSI), European Telecommunications Standards Institute (ETSI), Defence Science and Technology Laboratory (Dstl) etc. This document reports on discussions held at the meeting around this question and, leveraging this input, seeks to provide clear and appropriate recommendations to the UK QT community

    Meta-analysis of epigenome-wide association studies in newborns and children show widespread sex differences in blood DNA methylation

    Get PDF
    Publisher Copyright: © 2022 The AuthorsBackground: Among children, sex-specific differences in disease prevalence, age of onset, and susceptibility have been observed in health conditions including asthma, immune response, metabolic health, some pediatric and adult cancers, and psychiatric disorders. Epigenetic modifications such as DNA methylation may play a role in the sexual differences observed in diseases and other physiological traits. Methods: We performed a meta-analysis of the association of sex and cord blood DNA methylation at over 450,000 CpG sites in 8438 newborns from 17 cohorts participating in the Pregnancy And Childhood Epigenetics (PACE) Consortium. We also examined associations of child sex with DNA methylation in older children ages 5.5–10 years from 8 cohorts (n = 4268). Results: In newborn blood, sex was associated at Bonferroni level significance with differences in DNA methylation at 46,979 autosomal CpG sites (p < 1.3 × 10−7) after adjusting for white blood cell proportions and batch. Most of those sites had lower methylation levels in males than in females. Of the differentially methylated CpG sites identified in newborn blood, 68% (31,727) met look-up level significance (p < 1.1 × 10−6) in older children and had methylation differences in the same direction. Conclusions: This is a large-scale meta-analysis examining sex differences in DNA methylation in newborns and older children. Expanding upon previous studies, we replicated previous findings and identified additional autosomal sites with sex-specific differences in DNA methylation. Differentially methylated sites were enriched in genes involved in cancer, psychiatric disorders, and cardiovascular phenotypes.Peer reviewe

    Epigenetics and developmental programming of welfare and production traits in farm animals

    Get PDF
    The concept that postnatal health and development can be influenced by events that occur in utero originated from epidemiological studies in humans supported by numerous mechanistic (including epigenetic) studies in a variety of model species. Referred to as the ‘developmental origins of health and disease’ or ‘DOHaD’ hypothesis, the primary focus of large-animal studies until quite recently had been biomedical. Attention has since turned towards traits of commercial importance in farm animals. Herein we review the evidence that prenatal risk factors, including suboptimal parental nutrition, gestational stress, exposure to environmental chemicals and advanced breeding technologies, can determine traits such as postnatal growth, feed efficiency, milk yield, carcass composition, animal welfare and reproductive potential. We consider the role of epigenetic and cytoplasmic mechanisms of inheritance, and discuss implications for livestock production and future research endeavours. We conclude that although the concept is proven for several traits, issues relating to effect size, and hence commercial importance, remain. Studies have also invariably been conducted under controlled experimental conditions, frequently assessing single risk factors, thereby limiting their translational value for livestock production. We propose concerted international research efforts that consider multiple, concurrent stressors to better represent effects of contemporary animal production systems

    SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues.

    Get PDF
    There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithelial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection

    Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight

    Get PDF
    Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (P-Bonferroni <1.06 x 10(-7)). In additional analyses in 7,278 participants,Peer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore